If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+3X+42=180
We move all terms to the left:
X^2+3X+42-(180)=0
We add all the numbers together, and all the variables
X^2+3X-138=0
a = 1; b = 3; c = -138;
Δ = b2-4ac
Δ = 32-4·1·(-138)
Δ = 561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{561}}{2*1}=\frac{-3-\sqrt{561}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{561}}{2*1}=\frac{-3+\sqrt{561}}{2} $
| |2x-1|=3-x | | 3r+4+4=10-3r | | 4(4m-2)=6m | | 3x-(x-1)=9x+4 | | 18y-6=30 | | 30=b.5/2 | | (x^2)-(2x)+5=0 | | w/16+5/4=1 | | -1/3x+52=20 | | 0.25(x+24)=0.5(x-4)+3 | | -1/16x=5 | | 21n-9=15n+15 | | 0.05(7t+5)=0.35(t+1)-0.10 | | .15y+0.09(y+6000)=1740 | | 9x(5/2)-99=0 | | 3t+4=2+3t | | p/17+9=7 | | 7x-1-125=180 | | 5(4+0,4y)-2y=20 | | 16(2-y)+8y=24 | | 3x+12=2(x-6) | | 1/3(x+40=20 | | -1/2(2x-4)=3x+2-2x | | 14x-7=8+11 | | n-16+34=70 | | 3y+2(y-2)=6y-3(y-10) | | -11÷5+x=-3 | | (x-5)/3=21 | | n-12+7=24 | | 0=208-16x^2 | | -8x+5=-14 | | -13n+14=-11n-8 |